Navigation Ancillary
Information Facility

The poal of the Mavigation
and Arciflary Information
Facility ix e provide the
Jlanetary sefence community
with delayets and fransper-
able saftware tools, appropri-
afe for comprting, archiving,
aooessing and distributing
fhe anciifary viewing
peometry necded 1o thierpres
alservations of salar systent
haddies.

Amphion: Automatic Programming for the

NAIF Toolkit

Michael Lowry, Andrew Philpot, Thomas Pressburger, Ian Underwood, Ames Research Center, Richard

Waldinger, Muark Stickel, SRI International

Suppose you are a planetary scientist working on
observations for Galileo's tour, You want to
compute the predicted solar incidence angle at
the sub-spacecrafl point of Galileo on Jupiter.
You have some knowledge of the SPICE system
and its NAIF Toolkit, but vou haven't used it
much.

If you describe the problem like this;

Let x be the angle between two rays, u and v,

Let p be the point on the “surface™ of Jupiter
closest to Galileo at time 1.

Let u be the ray from a point p to the Sun.
et v be the “surface” normal at p.

{In SPICE Jupiter is normally modeled as a
triaxial ellipsoid with a “surface™ at the | bar
pressure level,)

Let the representation of angle x be in radians,

Let the representation of time ¢ for Galileo be

a string.
then yvou might construct the program named
SOLAR shown in Figure 1, This program makes
the appropriate calls to SPICELIR, the subrou-
tine library of the NATF Toolkit.

Alternatively, you could request Amphion, an
automatic programming system developed by the
Artificial Intelligence Branch at Ames Research
Center, to write the program for you. In this
SPICE application Amphion takes specifications

22 ¢ Fobruary 1984 « informalion Syslerms Newslaller

for geometric problems and returns FORTRAN
code that calls NAIF Toolkit subroutines and
functions. In fact, Amphion wrote the SOLAR
program of Figure 1.

Amphion consists of a program synthesis
component and a graphical user interface front
end. The program synthesis component takes as
input a specification written in a textual form
conceptually similar to the one above, The outpul
15 a FORTRAN program, such as the SOLAR
program. However, instead of writing text, you
enter specifications graphically through a menu-
guided imterface, This interface translates
completed specification diagrams such as the
SOLAR specification in Figure 2 to the textual
form used by the program synthesis component.

Amphion’s specification language is at the
level of abstract geometry—naote that the
specification above is purely geometric: there is
no mention of coordinate frames, units, and so
on, except in defining conventions for inputs and
outputs, The vocabulary is basic Euclidean
geomeny (e.g. points, rays, ellipsoids, and
intersections) augmented with astronomical
lerms (e.g, photons and ephemeris objects).

How would you learn the details of the
vocabulary and syntax of Amphion’s specifica-
tion language”? The graphical user interface
{GUI) makes this unnecessary, The GUT allows
vou to enter specifications as graphs of geometric
objects and constraints, 0 you don't need to
know the syntax of the specification language. It

SURROUTIHE SOLAR { GALILE, AMNGLET)

[Loput Paramelers
CHARMRCTER® (%] GALLILE

L Oulbpul Parameters
DOUBLE PRECISLION ANGLEL

C Functicn Declarations
OOOBLE PEECISION WSEPR

i Farameter Declarab ions
INTEGER JUFITE
FAEAMETER [(JUPLTE = 59%9)
INTEGEE CGALILEL
FARAMETER (GARLILE]l = -77)
INTEGER S0
PARAMETER ¢50M = 110

C variable Declarations
DODBLE PRECISLON RADJUOPR [3 3
COUBLE PRECISION E
COUBLE PEECISION PFYGALL (&
CAOUALE PRECTSION LTJUGH
DOUALE PRECTISION W1 o[3
DOUBRLE PRECLSION X
DOURLE FRECISION PYJIOERI { 6)
DOURLE PRECISTON LTE0IU
DOUBRLE PRECISTON MJIOPFIT [3, 4)
DOORLE PRECISTON w2 [3 3
DOUBLE PEECISTION X1
DOUBLE PRECISLON DV2WL ¢ 3)
LOOBELE PEECISTCH PYSOM | &)
DOUELE PEECISION XDVAVL | 3)
COUBLE PRECTSIGN W (3)
COUBLE PEECISION B [3)
COUALE PERCISIOHN BH [3)
DAUBLE PRECISION DWEN {3)
DOURLE FRECTSION X0VaN ¢ 3 9
LOURLE PRECTSION DELDVAY (3)
DEUBLE PRECTISION XDEDV2 ¢ 1

~—
L J

Dummy Yariaple Declarations
INTEGER DMY10

DOURLE PRECISION DMY20 [6
DCUOBLE PRECISTION DYH&O [O)
DOOELE PRECISTON DM¥ LAG

CALL BODVAR { JUPITE, 'RADIL',
DMY LD, RADIUE }

CALL SC82E { GALILEL, GALILE, E }
CALL SPESER | GALILEL, B, 'Jao0n',
FYGaLT)

CALL SPKEEZ (JUPITE, E, 'J2000',
"HONE', GALILELl, DEYZ0, LTJI0GA)
CALL VEQD { PWGALI { L 3, ¥l 3

¥ o= 0 = LTJUGH

CALL SPESSE | JUPITE, ¥, 'J2000°7,

PUTURT
OALL SPEEE ¢ SUN, X, 'J2000',
"WOME®, JUOPITE, DMYGD, LITEII0)

CALL BODMAT (JUFLTE, X, HJIODIT |
CALL YEQU [BPVIUPL { 1 1, ¥]

21 = ¥ = LTEUJIN

CRLL YVSUBE [Y1, v2, Dvavl)

CALL SPESSE ¢ S0H, X1, 'J2000',
FYEUH)

CARLL HEY MJUPIT, DVAVL, XDVAVI
CALL VEQUD { BPVSUN (1 3, V)

CRLL MEARDPT [XDV2EV1, RADIOPR [1)
RADJUP ¢ 2), RADIUP { 3),.N,
DMY130)

il
i

CaLL SUREFSM O RADJOER (1), EADJIUPR

¢ 2), RADIUP { 3 %, N, PH }
CALL VEOBR [W, Wi, DWVIAHN

CALL MTHEV [MJUPIT, DVZH, XDVZH
CALL WESDB [W, HDVIM, DHEDVEV

CAalLL MEY [MIUPLT, DHEDVEV, HDEDVZ)

AMGLET = VEEP | XDMDYE, PN)

EETURRN
EMD

’

also puides you in the process: pop-up menus
display what is possible to do next, given what
you have already done,

Amphion cmploys an object-oriented
paradigm for interactively developing problem
specifications. Conceptually, you develop a
problem specification by first defining a configu-
ration, and then declaring a subset of the objects
in a configuration to be inputs or outputs of the
desired FORTRAN program, A configuration is
a set of objects and their relationships.

A configuration is generated through the
actions of adding objects, deleting objects,
moving the edges berween objects that define
their interrelationships, and by merging objects
together, Adding and deleting objects are done
through pop-up menus; moving edges and
merging objects are done by directly manipulat-
ing the diagram, Declaring an object to be an
input or output brings up a menu of the possible
data conventions: coordinate systems for
locations, time systems for time, and units of
measurement, After a specification is developed,

Amphion performs checks for consistency and
completeness, If a specification is faulty,
Amphion gives you appropriate feedback; for

example, by telling you that a particular object in
the diagram is under constrained with respect 1o

the given inputs. If a specification 18 good,
Amphion generates the ext of a FORTRAN
program for you within a few minutes.

Progranuning af the specification level

The objective of Amphion is to enable you to
program at the level of abstract domain-oriented
problem specifications, rather than at the detailed

level of subroutine calls. The idea is that you

should be able to use the library without having

o absork all the documentation, You should also
be able to rease previous specifications that are

similar to yours without having to read that
specification's code, This 1s where Amphion
really comes into its own:

||
Figure 1. SOLAR program
corresponding e the diagram in
Figore 2. All the subroutines and
functicns in the SOLAR prozram

e Teonn the standard WNATF
Trowalkeir.

Information Syslams Newsialler = Februgry 1994 ¢ 23

LS T

Add

Delate

Heclara

Renane Spac

Sava Spac

Gemarats Code

(uit

———
“hanagf
T e

N

f
bcatonof
e W : \E
Tehalilen

TALILED L_ b

o :
PHOTOM = Tupiter =L} alileo -
/ \ fromt

T

Solar- Incidence=- Angle \\

A
LT N

Galilen-String- Time
IWFLUT

l JUPTTER,
¥
Angle-in-Fadiang
OUTFUT

|

I~

| .~

I

Figure 2. The graphical

specification for solar incidence
angle developed interactively

with Amphion's fromt end,

1

.

2.

Previous specifications can be used as a
starting point, instead of starting from scratch,
The abstract graphical notation makes it much
easier 1o identily the required modifications
than tracing through dependencies in
someone s code, Amphion’s editing opera-
tions facilitate making the changes.

There is no possibility of introducing bugs in
the code, since Amphion synthesizes the code
from scratch for the modified specification,

For example, if you wanted 1o modify the

specification above to be the solar mcidence
angle at the point on the surface at the center of

instrument boresight, you would just do the

following steps:

Add the instrament and the ray along the
boresight.

Add the intersection point of this ray with the
surface.

24 = February 1994« informalion Sysiems Newslalier

3. Replace the sub-spacecraft point with this

intersection point.

With Amphion it is easy to make a wide

variety of modifications to this specification,
such as:

Make the names of the spacecraft and the
planet variables that are input to the program.

Add more outputs, such as the location of the
sub-spacecraft point in Jupiter’s
planetocentric coordinate system,

Change the input and output representations
(e different time systems and coordinate
SYStems).

Use the sub-diagram for the sub-spacecraft
point as a component in another diagram.
Change the sub-spacecraft point and the
planet into input variables, and then use the
appropriate sub-diagram as a general specifi-
cation for a solar incidence angle program,

The last modification 15 especially interesting,
because it describes one quantity computed by a
new Toolkit subrouting named 1LLUM_M. The
other quantities computed by ILLUM_M are
emission and phase angle, which can be added to
the diagram to make a full specification of the
ILLUM_ M subroutine, Note that the same
interface for specifying problems could also be
used to define subroutines to add to Amplion’s
knowledge base. This will be important in the
future as the NAIF Toolkit is expanded, enabling
the members of the Jet Propulstion Laboratory's
NAIF group to maintain Amphion themselves.
(ILLUM_M is not vet part of the standard NAIF
Toolkit but is available on request from NAIE)

Current status

Amphion has been installed at the Jet
Propulsion Laboratory and is being tested by
members of the Navigation and Ancillary
Information Facility (NATF) team. In preliminary
lesting with a prototype in the fall of 1993,
scientists were able to develop their own
specifications after a one-hour tutoral. Both the
GUT and the program synthesis components are
driven by the same declarative domain theory,
ensuring compatibility between these two
components. Amphion’s programs are guaran-
teed to be correct implementations of specifica-
tions (with respect to the domain theory),
because they are penerated as a side effect of a
proof process that establishes their correctness.
The proofs are generated by the SNARK
automatic theorem prover from SRI, developed
by Mark Stickel and modified by Richard
Waldinger for the purpose of program synthesis.
The current domain theory is incomplete, but
covers most of the core data access and geometry
routings in the NAIF Toolkit.

Some aspects of the domain theory develop-
ment and extension were relatively straightfor-
ward, Extensions that only define new subrou-
tines are particularly easy and after further
development will likely be made directly by the
NAIF group using the Amphion interface, as
described in the ILLUM_M example above,
Even extensions that require defining new kinds
of abstract objects are usually easy to make, For
example, during a visit in September 1993, NAIF
Task Manager Chuck Acton wanted to specify a
problem involving a new kind of object that was
not yet part of the domain theory: the pole of a
planet. In 15 minutes we were able to add into
the domain theory the declarations and axioms
that were needed, Then Amphion was able to

generate a FORTRAN program for a specifica-
tion involving the pole of a planet.

However, some aspects of domain theory
development can be difficult. For example,
adding in the facility for declaring different
coordinate systems (e.g., spherical, rectangular,
planetocentric) to the previously existing facility
for declaring ditferent coordinate frames for
input and output required changes in many
existing axioms,

Future Plans

Our plans for this coming year are o develop
Amphion into a robust tool that can be distrib-
uted to user sites with the NAIF Toolkit for alpha
testing, We will extend the domain theory to
provide wider coverage of the NAIF Toolkit, We
will also enable Amphion to generate sophisti-
cated programs, such as iterative programs that
search tor occurrences o a geomeltric conligura-
tion (e.g. an occultation) within a user-specified
time window,

A major area of turther development will be
the front-end interface for specification develop-
ment. To make it easier to reuse specifications,
they will be indexed so that relevant predecessors
can be retrieved through a dialog about a user’s
requirements, Features will be added to make it
easier to understand specifications created by
other users. Users will also be able 1o encapsulate
small, parameterized specifications as definitions
that will be added to the domain theory.

Why the name Amphion? Amphion was the
son of Zeus who used his magic Iyre to charm
the stones lying around Thebes into position to
form the city's walls, The Amphion system's
expertise lies in charming subroutines into useful
programs through an advanced automatic
theorem prover, Because it uses a generic
architecture Amphion could be applied to other
libraries by developing the appropriate domain
theory, Our long-range goal is o expancd
Amphion into a full generic automatic program-
ming system that empowers domain experts to
develop and maintain domain theories with only
occasional consultation from experts in auio-
matic programming,.

For turther information on Amphion, includ-
ing discussion of possibilities for new applica-
tions, contact Michael Lowry at:

(408) 604-3369; lowry@pluto.arc.nasa, zov

Information Sysfams Newsletter * February 1994 « 25

